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Abstract: This paper proposes an algorithm based on the homotopy perturbation method (HPM) for the solving the one-
dimensional neutron transport equation with suitable multipoint boundary conditions (MPBC). The homotopy 
perturbation method is a coupling of traditional perturbation method and the homotopy function from topology, which 
continuously deforms the given problem to another that can be easily solved. The new version of homotopy method, 
upon which our algorithm is built, yields rapid convergence of the solution series to exact solution. Usually only two 
iterations lead to high accuracy solutions. Illustrative numerical examples are provided to prove the efficiency of the 
proposed algorithm for integral differential equations accompanied by the multipoint boundary conditions. 
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1. Introduction 
 
The integral - differential equations describe many 
phenomena in different fields of mechanical and 
nuclear engineering, chemistry, astronomy, biology, 
economics, potential theory and electrostatics. The 
resolution of boundary problems for these equations is 
the subject of several recent papers in which the 
authors have approached in most cases numerical 
methods: the finite element method, Monte Carlo, 
truncated series of Chebyshev polynomials, the 
fictitious domain method, SN  method, [3], [8], [11] - 
[13]. An exact solution of this integral-differential 
equation was found only in the particular cases. 
Generally, these are obtained with the help of the 
methods of mathematical analysis, abstract functional 
analysis and the spectral methods.  
   In recent years, the basic ideas of the homotopy, 
which is a concept of the topology and differential 
geometry, were used to obtain the approximate 
solutions for a wide class of differential, integral and 
integral – differential equations. We mention here the 
homotopy perturbation method (HPM) proposed by He 
in 1998 and the homotopy analysis method (HAM) 

proposed by Liao in 1992.  The perturbation methods 
approximate the solution of given problem by a 
series of small parameters. Unfortunately, the 
majority of non-linear problems have no small 
parameters and an unsuitable choice of these 
parameters can lead to bad effects. The new 
homotopy perturbation technique (HPM) embeds a 
parameter p that ranges from zero to one. When the 
embedding parameter is zero, we get a linear 
equation and if it is equal to one, we get the original 
transport equation. This embedding parameter that 
belongs to the interval [0, 1] can be considered as a 
small parameter.  
   In this study, the homotopy perturbation method [1], 
[4]-[7], [9]-[10] is implemented in a new form, such 
that we can to solve an integral- differential equation 
in which the unknown function depends on two 
variables. Multipoint boundary value problems 
(MBVP) of the ordinary differential and integral-
differential equations occurred in the areas of applied 
mathematics, fluid dynamics, plasma physics, 
biological sciences, chemical and mechanical  
engineering, especially, on the theoretical aspects. 
For example, He have used HPM for solving the 
boundary problem for partial differential equation [6], 
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Shakeri and Dehghan for the delay differential equation 
that arise in biology and engineering. 
      In this paper we present the forms of source 
function, which lead to the exact solutions of the 
proposed multipoint boundary value problems. There 
will be two types of the multipoint boundary value 
problems (MBVP).  
     The first refers to the particle transport in the 
homogeneous and isotropic medium for a plane 
geometry, in which the value of the solution obtained 
by HPM into one end of its domain is a linear 
combination of the values in some given points of this 
domain.  
    In the second case, the neutron transport equation 
into a non-homogeneous medium with isotropic 
scattering is studied using HPM and the MBVP 
techniques. 
    The numerical examples that will be presented show 
that our algorithm can successfully applied and in the 
case of the integral – differential equations whose 
solutions have a finite number of the discontinuity 
points. 
 

2.  Problem formulation 
2.1 Homogeneous isotropic medium 
 
Let us consider the integral-differential equation of 
transport theory for the stationary case and isotropic 
medium [2]: 
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where 
    •  ϕ (x, µ) is the density of neutrons, which  
        migrate in a direction that makes an angle α   

        with the  x axis and µ = cos α ; 
    •  sσ (x) is the scattering coefficient,  
    •  aσ (x) is the absorption coefficient  and 
        )()()( xxx as σσσ += ; 
 
    •  f(x, µ) is a given radioactive source function.  
 
Now, we split the equation (1) in two equations, 
using the following notations:  
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In view of (3), the equation (1) can be written in the 
forms 
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Adding and subtracting the equations (4) – (5) and 
introducing the notations:      
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we obtain the system 
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Determining v from the second equation of (7) and 
using the first equation, we rewrite the problem          
(7) - (8) in the following form 
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To solve the problem (9) - (10) for an homogeneous 
medium with σ(x) = σs(x) = 1 (non-absorption 
medium), we construct the homotopy 
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where  p ∈ [0, 1] is an embedding parameter, y0 is the 
initial guesses function for Y(x, μ) and 
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where the operator A is of the form           
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So, if the parameter p increases from 0 to 1, the 
solution Y(x, μ) of the equation (11) is 
“deformed“ continuously from the function Y0 to the 
solution of the problem (9) – (10). Now, by applying 

the classical perturbation technique, we assume that 
this solution can be expressed as a power series in p 
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When p → 1, the sum of (14) becomes the solution of 
equation (9): 
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Next we rewrite the equation (11) as 
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and substitute (15) in (17). Equating the like powers 
of p, we get the following set of integral-differential 
equations and boundary conditions: 
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The above nonlinear equations can be easily solved and 
the components Yn(x, μ) can be completely determined 
using the boundary conditions.  
Finally, the approximate solution for Y(x, μ) is obtained 
as 
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2.2 Non-homogenous medium 
 
Let us consider the integral-differential equation (9) 
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with the scattering coefficient (pure scattering) defined 
by 
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For each subinterval of D1 we will construct a 

homotopy of the type (17). Substituting (15) in (17) 

and equating the coefficients of p with the same 

power, we will solve the Cauchy problems presented 

below. 

 

I. For x ∈ [0, c]: 
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The boundary conditions will be chosen now of the 
form 
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II. For x ∈ (c, 1]: 
 

 

     

dYY

xy
x
xY

p

==

=
∂

∂

),1(,0),1(

),(
),(

:

'
00

02
0

2
20

µµ

µ
µ

µ
                 (29) 

 
 

     

0),1(,0),1(

),(')',(

),(),(
),(

:

'
11

1

0
0

002
1

2
21

==

+−

−+−=
∂

∂

∫

µµ

µµµ

µµ
µ

µ

YY

xSdxY

xYxy
x
xY

p

    (30) 

 
   

    
................

0),1(,0),1(

')',(),(
),(

:

'
22

1

0
112

2
2

22

==

−=
∂

∂
∫

µµ

µµµ
µ

µ

YY

dxYxY
x
xY

p

    

           (31) 
 
Numerical example will prove that this method is rapid 
convergence, being needed only two terms of the series 
(15) for each subintervals of D1 to get in the common 
point  x = 0.5 values very close to one of the other for 
the continuous exact solutions on the spatial interval    
[0, 1]. 
 
 
3. Numerical examples 
 

3.1. Homogeneous medium 
 
In this subsection we present three source functions, 
odd with respect to μ. This leads for p = 1 to the rapid 
converged series (15) to the exact solution of given 
transport problems. 
 
Example 1 
 
Let us consider the integral-differential equation in a 
homogeneous isotropic medium: 
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with a solution that verifies the conditions 
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The exact solution of this MBVP is 
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Choosing the function y0(x,μ) = μ2, we have the 
problems: 
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with the solution: 

WSEAS TRANSACTIONS on MATHEMATICS Olga Martin

E-ISSN: 2224-2880 525 Issue 5, Volume 12, May 2013



                               

                       
62

),(
2

0
xxxY −=µ                           (35) 

 
 

          

),(')',(

),(
),(

:

1

0
0

0
2

2
1

2
21

µµµ

µµ
µ

µ

xSdxY

xY
x
xY

p

+−

−+−=
∂

∂

∫

        (36) 

 
 

                  






+






=

=

µµµ

µ

,
3
23,

3
13),1(

,0),0(

111

1

YYY

Y
           

         
 
with the solution:     
         

                   
62

),( 3
2

1
xxxxY ++−=µ                        (37) 

 
 
The sum of the first two terms of the series (15) leads 
to the exact solution: 
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                                   Fig. 3 

 
Figure 3 shows the process of the “deformation” of   
Y (x, μ) from Y0 (x, μ) to the exact solution of given 
problem function:  
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Notations used are as follows:  
 

              
.4,3,2,1,0,4/

),,(),( 10,

==

+=

jjp

xYpxYY

j

ijiji µµ
              (39) 

 
Example 2 
 
The source function is now of the form 
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and the solution of (33) verifies the conditions 
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The exact solution of this MBVP is 
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The sum of the first two terms of the series (15) leads 
to the exact solution: 
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The “deformation” of Y from Y0 to ue is shown in the 
Figure 4, where we used the same notations (39). 
 
 
 
    
 
 

 
 
            Fig. 4 
 
 
Example 3 
 
Let us consider the integral-differential equation (32),  
where  
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The solution of the equation (32) will be subject to 
the following conditions: 
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The sum of the first two terms of the series (15) lead to 
the exact solution: 
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3.2 Non-homogenous medium 
 
In a non-absorption medium we define the scattering  
coefficient of the form 
 

 




∈
∈

==
]1,(,2/1

],0[,1
)()(

cx
cx

xxs σσ       (53) 

 

and 
 
 










∈
−−

+−−

∈−+−

=

]1,2/1(,
12

)16()1()1(2

]2/1,0[,3/22)2sin(2

),(
22

3

2

xxx

xx

xf
µµ

µππ

µ

 
 
The solutions for the two sub-intervals will be 
presented below. 
 
I. x∈[0,  1/2].  In equation  
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Also, summing only the first two terms of the series (15) 
(p = 1), we get 
 
 

              
),,(),(               

),(),(),(

1
2

1
2

0
22

µµµ

µµµµµµ

xRxu

xYxYxY

e +=

=+=
    (56) 

 

 where  22),( xxue µµ =  and 





 −= 2

4

1 3
1

12
µxR . 

 
 
II. x∈[1/2, 1].  In this case (23) becomes 
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with the boundary conditions: 
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If we choose y0(x, μ) = 2 μ2, we have 
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with the solution:    
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Also, summing only the first two terms (58) and (59) 
of the series (15) (p = 1), we get 
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where the rest function R2 is of the form 
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Next, we define the error function of μ, which 
corresponds to x = 1/2 :    

 ),2/1(),2/1(,)( 21 kkkkk RRererer µµµ −==     

      (61) 

 

 
         
         Fig. 5 
 
 
The variation of er is shown in the Fig. 5, where the 
seven values of  μk :  
       6,0},1,4/3,3/2,2/1,3/1,4/1,6/1{ =∈ kkµ  
are marked with a symbol. 
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In Fig. 6 are presented the graphs of the unknown 
function, ui,k = u(xi, μk), xi = ih , h = 1/20, 20,..,1=i ,    
                          
 6,0},1,4/3,3/2,2/1,3/1,4/1,6/1{ =∈ kkµ . 
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         Fig. 6 
 
 
In practical applications it should be mention that the 
value of the density is equal to zero when the direction 
of the movement of particles makes an angle of 90 
degrees to the axis Ox. Significant values of the 
function u will be obtained for μ∈[0.25, 1], so the 
angles α∈[00, 750]. 
 
 
4. Conclusions 
Using HPM we have obtained the series solutions for 
the integral-differential equations accompanied by 
multipoint boundary conditions. The numerical 
examples prove that we get a good approximation of 
the exact solution considering only the first two terms 
of the series. This success was due to the form that we 
choose for the initial guess function y0. Unlike other 
existing works in literature, where the integral-
differential equations are solved for an unknown 
functions that depends on a variable, in this paper we 
present an algorithm for a MBVP in which the solution 
depends on two variabiles. 

In the future we will extend this method to the 
transport problems in which the solution has a finite 
number of discontinuities. 
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